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A stochastic description of the kinetics of some reactions of first order (consecutive irreversible,
reversible, and parallel irreversible reactions) is derived. The method eliminates the necessity
of solving differential-difference equations and is based on determining the probability -of trans-
formation of one particle in a finite time interval.

The stochastic concept has been applied in the description of a number of mono- and bimolecular
reactions'. For the studied types of first-order reactions (isolated®:3, reversible® and two parallel
reactions3, multicomponent system of first-order reactions®, triangular reaction®), it was shown
that an exact solution can be found for the mean number of particles of a given type at time ¢
and for fluctuation of the number of particles; the stochastic mean number of particles agrees
with classical (deterministic) value. In most cases"3'4, the system was described by a system
of differential-difference equations which were solved with the aid of a generating function.

In the present paper the stochastic concept is applied to the kinetics of conse-
cutive irreversible reactions, a reversible and a parallel irreversible one, all of first
order, hence cases solved already earlier!'3-*, However, the method of solution is
different in that it is simpler and avoids the solution of differential-difference equa-
tions.

Consecutive Irreversible First-Order Reactions

We shall consider j-1 consecutive irreversible reactions of first order:
Ai> Ay, i=1,.j1. n

Let the number of particles A; at time ¢ be N, (t); we assume that N,,(0) = N and
NA(0) = Ofori > 1. Further, the probability that the particle A; will be transformed
to A;,, during a very short time interval Af(At — 0) is k; At. The conversion of A;
to A, is considered as an instantaneous event (this assumption is discussed else-
where®). The system (1) will be described stochastically if the probability P{*)(r)
that the number of particles A; at time fis n (i = 1,...j, n = 0,1 ... N) is known
at any time ¢ > 0. Let p;() be the probability that an arbitrarily selected particle A,
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will be converted to A; during the time interval (0, t), then P{*’(t) can be derived
as follows: The system will contain just n particles A; at time ¢ if n particles A, were
converted to A; in the interval (0, t) and N-n particles A; were converted to A,
(r * i) or did not react at all. The probability that n selected particles A; were con-
verted to A; is pj(¢) and the probability that the remaining N —n particles A, did
not react, or were converted to A, (r =% i)is [1 — p(#)]" ™" There are (}) possibili-
ties how to divide N numbered particles into two groups containing » and N—n
particles. Since it plays no role what particles A, were converted to A; but only their
number is important, we have

P = () 220 [1 — m(O]" . @

These probabilities correspond to the binomial distribution and fulfil the relation
N

Y P =1. (2a)
n=0

Assuming that the particle A; will be changed to A;,; in a very short time interval
At with the probability k; Az, we can derive pi(t) in the integral form. For i = 1:

pi(f) = lim (1 — k; At)’/*" = exp (— kyt), 3)

A1-0

which means the probability that the particle A, did not react in the interval (0, 1).
Fori=2,...j:

() =ky ... ki,ljv J J 0exp [kt — ko, = 1y) — ...

-1=0J1142=0 Tn=
= dioy(tioy = Tiz) = Kt — o)) dey dro O]
Here 7, (r = 1,... i — 1) are auxiliary integration variables denoting time in which

the particle A, is changed to A, ;; for i = j we set k; = 0.
The mean number of particles A; at time t, {N;(t), is for the binomial distribu-

tion (2) given by
N

NA() = X nPM(e) = Npy(t) . )

n=0
With the use of Eqs (3) and (4) it can be shown that this mean value fulfils the relation
(N (1pfdt = N dp)fdt = — Nkipt) + Nki-1pi-1(1) =

= - ki<NA|(t)> + ki—1<NA|v.(t)> , (6)
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which is analogous to the law of mass action in classical chemical kinetics. Eqs (6)
for i = 1,...j (ko = k; = 0) form a system of linear differential equations of first
order which, together with the initial conditions N,;(0) = Né,; for i =1,...j, is
identical with the set of equations describing the reacting system in a deterministic
way and has therefore the same solution.

The coefficient of variation (relative ﬂuctuation) of the number of particles for the
distribution (2} is given as

CYINAD) = (MR — AN =
= {[p() = 1IN} = (VA = N7 ”)

The mean time, T}, of the conversion of A, to A; is given as

H=Jki,1tpi_,(t)dt, i=2,.... (8)
0

From the Egs (6) and (8) we obtain the recurrent formula
T =Ty +in~1(')dl- 9
0
The latter integral can be determined in the following way. From Egq. (6) it follows

b [ 200 =k [ - s (10)

Here the last term is equal to zero for 1 < i < j. Since {§ p,(f) dt = 1]k, it follows
from this equation that {§ p(z) dt = 1/k;. The mean time of conversion of A, to A,
is T, = [§ exp (— kyt) kyt di = 1]k,. Therefore, from Eq. (9) we obtain

T, =

r

ll/k, . (1n

If one of the values of k,(r = 1...j — 1) is much smaller than the others, e.g. k,,
then Tj ~ 1]k, The conversion of A, to Ay, is then the rate-determining step
in reaction (I).

Reversible First-Order Reaction
We shall consider a reversible reaction of the type

A=B. (12)
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Let the number of particles A and B at time t = 0 be N and zero, respectively.
Further, let the probability that the particle A will react in a very short time interval
At to form B be k; At and the probability that the particle B will be converted to A
during this time interval be k, Ar. Both conversions proper, A » B and B — A, are
considered as instantaneous events.

The probability pA(t) that a selected particle A will not be changed to B at time ¢
(regardless to whether it remains in the interval (0, t)in the form A or not) is

pa) = 0 (= ki) {1+ 5 (lak)”

m=0J T2m-1=0 =

The probability pB(t) that an arbitrarily selected particle A will be converted to B
at time t is

pe(t) = ky exp (— kyt) Zo(kxkzy"

m=

‘ Tt 2 2m+1
j J J Oexp [ '-21 (= 1) (ky — k) ti] dry oo ATy o (14)

Tme1=0J 12n=0 u=

The auxiliary variables 7; in Eqs (13) and (14) denote time in which A was changed
to B (1 is odd) or B to A (i is even). From Eqs (13) and (14) we obtain a differential
equation for pg(f):

dpg()fdt = — kypa(t) + k,[1 — pe(1)] - (15)
Its initial condition is pg(0) = 0; its solution is
pe(t) = ki {1 — exp [~(ky + k) ]}/(ky + k3) . (16)
Since pa(f) + ps(t) = 1,
pa(t) = {ky + kyexp [—(ky + ky) (]}{(ky + k3). (17)
The probability that the system contains n particles X at time t, P{O(t), is equal to
the product of both probabilities that n particles A are in the state X at time ¢ and
that N—n particles A are not in the state X at time f, multiplied by the number
of possible arrangements of N numbered particles into two groups containing n and

N —n particles:
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POM) =M px() [l — px(]*™; X=AorB, n=01...N. (18)

This equation corresponds again to a binomial distribution. The mean number
of particles X in the system, (Ny(£)) , is

(Nx(D)y = Npy(); X = AorB. (19)

Eqs (16), (17) and (19) are in accord with the deterministic solutjon. The coefficient
of variation of the number of particles in the system is

YNy} = ([ox'() ~ 1N} X = A or B. (20)

For t - oo (thermodynamic equilibrium) we have

lim P(1) = (0) kY "Ik, + ko) = () KY7"(1 + K)Y, (21a)
lim PP(1) = () Kk ~(ky + k)Y = GYK*(1 + K)Y, (21b)

where K = k, [k, is the equilibrium constant of the reaction. Further,

lim (NA(1)) = Nkyf(ky + k) = NJ(1 + K), (224)
lim {Ng(t)> = Nk, J(k, + k;) = NK[(1 + K) . (22b)

The coefficient of variation is:

lim CV{NA()} = (KIN)2, (23a)
lim CV{Ng(1)} = (1/KN)"/*. (23b)

These limiting relations correspond to equations derived for mean values and fluc-
tuations of the number of particles in statistical thermodynamics’.

Irreversible Parallel Reactions
We shall consider j parallel irreversible reactions of first order:

Ao— Ay i=1,..7, (24)
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and assume that the number of particles A, at time t = 0 is N, {0) = N and the
number of particles A; at time # = 0is N, (0) = Ofori = 1, ... j. Let the probability
that the particle A, will react in a very short time interval At — Otoform A be k; At.
Then the probability po(t) that a selected particle A, will not react during the time
interval (0, 1) is

j i
po(t) = lim (1 = Y k; Ay’* = exp(~ Y kyt), (25)
At—=0 i=1 i=1

and the proBability pi(f) that a selected molecule Ay will react during the interval
(0, 1) to form A, is

M0=J}m(iihﬁkm=(w;hyﬁ—ww(iihﬂ;i=LHJ.Q®

i

The sum of all probabilities p; (i = 0, 1, ... j) is equal to 1. The probability P{*(t)
that the system contains n particles A; at time ¢ (i =0, 1,...j) is again given by the
binomial distribution

PO = (5 (O [1 = p "5 i=0,1,...]. @)

The mean number of particles A; and coefficient of variation of the number of par-
ticles are given by analogous expressions as in the preceding cases:

NA () = Np(8), i=0,1,...], (28)
CVINA (O} = {[p7 (1) = 1]IN}2 5 i=0,1,...]. (29)
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