ALTERNATIVE STOCHASTIC FORMULATION OF FIRST-ORDER REACTION KINETICS

M.Šolc

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, Prague 6

Received February 4th, 1971

A stochastic description of the kinetics of some reactions of first order (consecutive irreversible, reversible, and parallel irreversible reactions) is derived. The method eliminates the necessity of solving differential-difference equations and is based on determining the probability of transformation of one particle in a finite time interval.

The stochastic concept has been applied in the description of a number of mono- and bimolecular reactions¹. For the studied types of first-order reactions (isolated^{2,3}, reversible³ and two parallel reactions³, multicomponent system of first-order reactions⁴, triangular reactions⁵), it was shown that an exact solution can be found for the mean number of particles of a given type at time t and for fluctuation of the number of particles; the stochastic mean number of particles agrees with classical (deterministic) value. In most cases^{1,3,4}, the system was described by a system of differential-difference equations which were solved with the aid of a generating function.

In the present paper the stochastic concept is applied to the kinetics of consecutive irreversible reactions, a reversible and a parallel irreversible one, all of first order, hence cases solved already earlier^{1,3,4}. However, the method of solution is different in that it is simpler and avoids the solution of differential-difference equations.

Consecutive Irreversible First-Order Reactions

We shall consider j-1 consecutive irreversible reactions of first order:

$$A_i \to A_{i+1}, \quad i = 1, \dots j - 1.$$
 (1)

Let the number of particles A_i at time t be $N_{A_i}(t)$; we assume that $N_{A_i}(0) = N$ and $N_{A_i}(0) = 0$ for i > 1. Further, the probability that the particle A_i will be transformed to A_{i+1} during a very short time interval $\Delta t(\Delta t \to 0)$ is $k_i \Delta t$. The conversion of A_i to A_{i+1} is considered as an instantaneous event (this assumption is discussed elsewhere⁶). The system (1) will be described stochastically if the probability $P_n^{(A_i)}(t)$ that the number of particles A_i at time t is n (i = 1, ..., j, n = 0, 1...N) is known at any time t > 0. Let $p_i(t)$ be the probability that an arbitrarily selected particle A_1

1056

will be converted to A_i during the time interval (0, t), then $P_n^{(A)}(t)$ can be derived as follows: The system will contain just *n* particles A_i at time *t* if *n* particles A_1 were converted to A_i in the interval (0, t) and *N*-*n* particles A_1 were converted to A_r $(r \neq i)$ or did not react at all. The probability that *n* selected particles A_1 were converted to A_i is $p_i^n(t)$ and the probability that the remaining N-n particles A_1 did not react, or were converted to A_r $(r \neq i)$ is $[1 - p_i(t)]^{N-n}$. There are $\binom{N}{n}$ possibilities how to divide *N* numbered particles into two groups containing *n* and N-nparticles. Since it plays no role what particles A_1 were converted to A_i but only their number is important, we have

$$P_{n}^{(A_{1})}(t) = {\binom{N}{n}} p_{i}^{n}(t) \left[1 - p_{i}(t)\right]^{N-n}.$$
(2)

These probabilities correspond to the binomial distribution and fulfil the relation

$$\sum_{n=0}^{N} P_{n}^{(A_{1})}(t) = 1 .$$
 (2a)

Assuming that the particle A_i will be changed to A_{j+1} in a very short time interval Δt with the probability k_i Δt , we can derive p_i(t) in the integral form. For i = 1:

$$p_1(t) = \lim_{\Delta t \to 0} (1 - k_1 \,\Delta t)^{t/\Delta t} = \exp\left(-k_1 t\right),\tag{3}$$

which means the probability that the particle A_1 did not react in the interval (0, t). For i = 2, ..., j:

$$p_{i}(t) = k_{1} \dots k_{i-1} \int_{\tau_{i-1}=0}^{t} \int_{\tau_{i-2}=0}^{\tau_{i-1}} \dots \int_{\tau_{1}=0}^{\tau_{2}} \exp\left[-k_{1}\tau_{1} - k_{2}(\tau_{2} - \tau_{1}) - \dots - k_{i-1}(\tau_{i-1} - \tau_{i-2}) - k_{i}(t - \tau_{i-1})\right] d\tau_{1} \dots d\tau_{i-1} .$$

$$(4)$$

Here τ_r (r = 1, ..., i - 1) are auxiliary integration variables denoting time in which the particle A_r is changed to A_{r+1}; for i = j we set $k_j = 0$.

The mean number of particles A_i at time t, $\langle N_{Ai}(t) \rangle$, is for the binomial distribution (2) given by

$$\langle N_{A_{i}}(t) \rangle = \sum_{n=0}^{N} n P_{n}^{(A_{i})}(t) = N p_{i}(t) .$$
 (5)

With the use of Eqs (3) and (4) it can be shown that this mean value fulfils the relation

$$d\langle N_{A_{i}}(t)\rangle/dt = N dp_{i}(t)/dt = -Nk_{i}p_{i}(t) + Nk_{i-1}p_{i-1}(t) =$$

= - k_{i}\langle N_{A_{i}}(t)\rangle + k_{i-1}\langle N_{A_{i-1}}(t)\rangle, \qquad (6)

Collection Czechoslov. Chem. Commun. /Vol. 37/ (1972)

Alternative Stochastic Formulation of First-Order Reaction Kinetics

which is analogous to the law of mass action in classical chemical kinetics. Eqs (6) for i = 1, ..., j ($k_0 = k_j = 0$) form a system of linear differential equations of first order which, together with the initial conditions $N_{Ai}(0) = N\delta_{1i}$ for i = 1, ..., j, is identical with the set of equations describing the reacting system in a deterministic way and has therefore the same solution.

The coefficient of variation (relative fluctuation) of the number of particles for the distribution (2) is given as

$$CV\{N_{A_{1}}(t)\} \equiv (\langle N_{A_{1}}^{2}(t) \rangle - \langle N_{A_{1}}(t) \rangle^{2})^{1/2} / \langle (N_{A_{1}}(t) \rangle =$$

= {[p_{1}^{-1}(t) - 1]/N}^{1/2} = (\langle N_{A_{1}}(t) \rangle^{-1} - N^{-1})^{1/2}. (7)

The mean time, T_i , of the conversion of A_1 to A_i is given as

$$T_{i} = \int_{0}^{\infty} k_{i-1} t p_{i-1}(t) \, \mathrm{d}t \,, \quad i = 2, \dots j \,.$$
(8)

From the Eqs (6) and (8) we obtain the recurrent formula

$$T_{i} = T_{i-1} + \int_{0}^{\infty} p_{i-1}(t) \, \mathrm{d}t \,. \tag{9}$$

The latter integral can be determined in the following way. From Eq. (6) it follows

$$k_{i} \int_{0}^{\infty} p_{i}(t) dt = k_{i-1} \int_{0}^{\infty} p_{i-1}(t) dt - [p_{i}(t)]_{0}^{\infty}.$$
 (10)

Here the last term is equal to zero for 1 < i < j. Since $\int_0^{\infty} p_1(t) dt = 1/k_1$, it follows from this equation that $\int_0^{\infty} p_i(t) dt = 1/k_i$. The mean time of conversion of A₁ to A₂ is $T_2 = \int_0^{\infty} \exp(-k_1 t) k_1 t dt = 1/k_1$. Therefore, from Eq. (9) we obtain

$$T_{\rm i} = \sum_{\rm r=1}^{\rm i=1} 1/k_{\rm r} \,. \tag{11}$$

If one of the values of $k_r(r = 1 \dots j - 1)$ is much smaller than the others, e.g. k_s , then $T_j \approx 1/k_s$. The conversion of A_s to A_{s+1} is then the rate-determining step in reaction (1).

Reversible First-Order Reaction

We shall consider a reversible reaction of the type

$$A \rightleftharpoons B . \tag{12}$$

Collection Czechoslov. Chem. Commun. /Vol. 37/ (1972)

1058

Let the number of particles A and B at time t = 0 be N and zero, respectively. Further, let the probability that the particle A will react in a very short time interval Δt to form B be $k_1 \Delta t$ and the probability that the particle B will be converted to A during this time interval be $k_2 \Delta t$. Both conversions proper, A \rightarrow B and B \rightarrow A, are considered as instantaneous events.

The probability $p_A(t)$ that a selected particle A will not be changed to B at time t (regardless to whether it remains in the interval (0, t) in the form A or not) is

$$p_{A}(t) = \exp\left(-k_{1}t\right)\left\{1 + \sum_{m=1}^{\infty} (k_{1}k_{2})^{m}\right\}.$$
$$\cdot \int_{\tau_{2m}=0}^{t} \int_{\tau_{2m-1}=0}^{\tau_{2m}} \cdots \int_{\tau_{1}=0}^{\tau_{2}} \exp\left[\sum_{i=1}^{2m} (-1)^{i} (k_{1} - k_{2}) \tau_{i}\right] d\tau_{1} \dots d\tau_{2m}\right\}.$$
(13)

The probability $p_{B}(t)$ that an arbitrarily selected particle A will be converted to B at time t is

$$p_{B}(t) = k_{1} \exp\left(-k_{2}t\right) \sum_{m=0}^{\infty} (k_{1}k_{2})^{m} .$$

$$\cdot \int_{\tau_{2m+1}=0}^{\tau} \int_{\tau_{2m}=0}^{\tau_{2m+1}} \cdots \int_{\tau_{1}=0}^{\tau_{2}} \exp\left[\sum_{i=1}^{2m+1} (-1)^{i} (k_{1}-k_{2}) \tau_{i}\right] d\tau_{1} \dots d\tau_{2m+1} .$$
(14)

The auxiliary variables τ_i in Eqs (13) and (14) denote time in which A was changed to B (i is odd) or B to A (i is even). From Eqs (13) and (14) we obtain a differential equation for $p_B(t)$:

$$dp_{B}(t)/dt = -k_{2}p_{B}(t) + k_{1}[1 - p_{B}(t)].$$
(15)

Its initial condition is $p_B(0) = 0$; its solution is

$$p_{\rm B}(t) = k_1 \{1 - \exp\left[-(k_1 + k_2) t\right]\} / (k_1 + k_2) . \tag{16}$$

Since $p_A(t) + p_B(t) = 1$,

$$p_{A}(t) = \{k_{2} + k_{1} \exp\left[-(k_{1} + k_{2})t\right]\}/(k_{1} + k_{2}).$$
(17)

The probability that the system contains *n* particles X at time *t*, $P_n^{(X)}(t)$, is equal to the product of both probabilities that *n* particles A are in the state X at time *t* and that N-n particles A are not in the state X at time *t*, multiplied by the number of possible arrangements of N numbered particles into two groups containing *n* and N-n particles:

Alternative Stochastic Formulation of First-Order Reaction Kinetics

$$P_n^{(X)}(t) = \binom{N}{n} p_X^n(t) \left[1 - p_X(t) \right]^{N-n}; \quad X = A \text{ or } B, \quad n = 0, 1 \dots N.$$
 (18)

This equation corresponds again to a binomial distribution. The mean number of particles X in the system, $\langle N_X(t) \rangle$, is

$$\langle N_{\mathbf{X}}(t) \rangle = N p_{\mathbf{X}}(t); \quad \mathbf{X} = \mathbf{A} \text{ or } \mathbf{B}.$$
 (19)

Eqs (16), (17) and (19) are in accord with the deterministic solution. The coefficient of variation of the number of particles in the system is

$$CV\{N_{\mathbf{X}}(t)\} = \{[p_{\mathbf{X}}^{-1}(t) - 1]/N\}^{1/2}; \mathbf{X} = \mathbf{A} \text{ or } \mathbf{B}.$$
 (20)

For $t \to \infty$ (thermodynamic equilibrium) we have

$$\lim_{t\to\infty} P_n^{(A)}(t) = \binom{N}{n} k_1^{N-n} k_2^n / (k_1 + k_2)^N = \binom{N}{n} K^{N-n} / (1+K)^N, \qquad (21a)$$

$$\lim_{t \to \infty} P_n^{(B)}(t) = \binom{N}{n} k_1^n k_2^{N-n} / (k_1 + k_2)^N = \binom{N}{n} K^n / (1 + K)^N, \qquad (21b)$$

where $K = k_1/k_2$ is the equilibrium constant of the reaction. Further,

$$\lim_{t \to \infty} \langle N_{\rm A}(t) \rangle = N k_2 / (k_1 + k_2) = N / (1 + K) , \qquad (22a)$$

$$\lim_{t \to \infty} \langle N_{\rm B}(t) \rangle = N k_1 / (k_1 + k_2) = N K / (1 + K) .$$
(22b)

The coefficient of variation is:

$$\lim_{t \to \infty} CV\{N_{\mathsf{A}}(t)\} = (K/N)^{1/2}, \qquad (23a)$$

$$\lim_{t \to \infty} CV\{N_{\rm B}(t)\} = (1/KN)^{1/2} .$$
 (23b)

These limiting relations correspond to equations derived for mean values and fluctuations of the number of particles in statistical thermodynamics⁷.

Irreversible Parallel Reactions

We shall consider *j* parallel irreversible reactions of first order:

$$A_0 \to A_i ; \quad i = 1, \dots j , \qquad (24)$$

Collection Czechoslov. Chem. Commun. /Vol. 37/ (1972)

1060

and assume that the number of particles A_0 at time t = 0 is $N_{A_0}(0) = N$ and the number of particles A_i at time t = 0 is $N_{A_0}(0) = 0$ for i = 1, ..., j. Let the probability that the particle A_0 will react in a very short time interval $\Delta t \rightarrow 0$ to form A_i be $k_i \Delta t$. Then the probability $p_0(t)$ that a selected particle A_0 will not react during the time interval (0, t) is

$$p_0(t) = \lim_{\Delta t \to 0} (1 - \sum_{i=1}^{j} k_i \,\Delta t)^{t/\Delta t} = \exp\left(-\sum_{i=1}^{j} k_i t\right),\tag{25}$$

and the probability $p_i(t)$ that a selected molecule A_0 will react during the interval (0, t) to form A_i is

$$p_{i}(t) = \int_{0}^{t} \exp\left(-\sum_{i=1}^{j} k_{i}\tau\right) k_{i} d\tau = \left(k_{i} \sum_{i=1}^{j} k_{i}\right) \cdot \left[1 - \exp\left(-\sum_{i=1}^{j} k_{i}t\right)\right]; \quad i = 1, \dots, j \cdot (26)$$

The sum of all probabilities p_i (i = 0, 1, ..., j) is equal to 1. The probability $P_n^{(A)}(t)$ that the system contains *n* particles A_i at time t (i = 0, 1, ..., j) is again given by the binomial distribution

$$P_{n}^{(A_{i})}(t) = {\binom{N}{n}} p_{i}^{n}(t) \left[1 - p_{i}(t)\right]^{N-n}; \quad i = 0, 1, \dots j.$$
(27)

The mean number of particles A_i and coefficient of variation of the number of particles are given by analogous expressions as in the preceding cases:

$$\langle N_{\mathbf{A}_{\mathbf{i}}}(t) \rangle = N p_{\mathbf{i}}(t), \quad i = 0, 1, \dots j, \qquad (28)$$

$$CV\{N_{A_{i}}(t)\} = \{ [p_{i}^{-1}(t) - 1] / N \}^{1/2} ; \quad i = 0, 1, \dots j .$$
⁽²⁹⁾

REFERENCES

1. McQuarrie D. A.: J. Appl. Prob. 4, 413 (1967).

4

- 2. Bartholomay A. F.: Bull. Math. Biophys. 20, 175 (1958).
- 3. McQuarrie D. A.: J. Chem. Phys. 38, 433 (1963).
- 4. Darvey I. G., Staff P. J.: J. Chem. Phys. 44, 990 (1966).
- 5. Fredrickson A. G.: Chem. Eng. Sci. 21, 687 (1966).
- 6. Šolc M.: Z. Physik. Chem. (Frankfurt) 75, 223 (1971).
- Hill T. L.: An Introduction to Statistical Thermodynamics, p. 181. Addison-Wesley, Reading 1962.

Translated by K. Micka.