ALTERNATIVE STOCHASTIC FORMULATION OF FIRST-ORDER REACTION KINETICS

M.Šolc
Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, Prague 6

Received February 4th, 1971

Abstract

A stochastic description of the kinetics of some reactions of first order (consecutive irreversible, reversible, and parallel irreversible reactions) is derived. The method eliminates the necessity of solving differential-difference equations and is based on determining the probability of transformation of one particle in a finite time interval.

The stochastic concept has been applied in the description of a number of mono- and bimolecular reactions ${ }^{1}$. For the studied types of first-order reactions (isolated ${ }^{2,3}$, reversible ${ }^{3}$ and two parallel reactions ${ }^{3}$, multicomponent system of first-order reactions ${ }^{4}$, triangular reaction ${ }^{5}$), it was shown that an exact solution can be found for the mean number of particles of a given type at time t and for fluctuation of the number of particles; the stochastic mean number of particles agrees with classical (deterministic) value. In most cases ${ }^{1,3,4}$, the system was described by a system of differential-difference equations which were solved with the aid of a generating function.

In the present paper the stochastic concept is applied to the kinetics of consecutive irreversible reactions, a reversible and a parallel irreversible one, all of first order, hence cases solved already earlier ${ }^{1,3,4}$. However, the method of solution is different in that it is simpler and avoids the solution of differential-difference equations.

Consecutive Irreversible First-Order Reactions

We shall consider j-1 consecutive irreversible reactions of first order:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{i}} \rightarrow \mathrm{~A}_{\mathrm{i}+1}, \quad i=1, \ldots j-1 \tag{1}
\end{equation*}
$$

Let the number of particles A_{i} at time t be $N_{\mathrm{A}_{1}}(t)$; we assume that $N_{\mathrm{A}_{1}}(0)=N$ and $N_{A_{1}}(0)=0$ for $i>1$. Further, the probability that the particle A_{i} will be transformed to A_{i+1} during a very short time interval $\Delta t(\Delta t \rightarrow 0)$ is $k_{\mathrm{i}} \Delta t$. The conversion of A_{i} to A_{i+1} is considered as an instantaneous event (this assumption is discussed elsewhere ${ }^{6}$). The system (1) will be described stochastically if the probability $P_{n}^{\left(A_{1}\right)}(t)$ that the number of particles A_{i} at time t is $n(i=1, \ldots \mathrm{j}, n=0,1 \ldots N)$ is known at any time $t>0$. Let $p_{\mathrm{i}}(t)$ be the probability that an arbitrarily selected particle A_{1}
will be converted to A_{i} during the time interval $(0, \mathrm{t})$, then $P_{n}^{\left(\mathrm{A}_{1}\right)}(t)$ can be derived as follows: The system will contain just n particles A_{i} at time t if n particles A_{i} were converted to A_{i} in the interval $(0, t)$ and $N-n$ particles A_{1} were converted to A_{r} ($r \neq \mathrm{i}$) or did not react at all. The probability that n selected particles A_{1} were converted to A_{i} is $p_{\mathrm{i}}^{\mathrm{n}}(t)$ and the probability that the remaining $N-n$ particles A_{1} did not react, or were converted to $\mathrm{A}_{\mathrm{r}}(r \neq i)$ is $\left[1-p_{\mathrm{i}}(t)\right]^{N-n}$. There are $\binom{N}{n}$ possibilities how to divide N numbered particles into two groups containing n and $N-n$ particles. Since it plays no role what particles A_{1} were converted to A_{i} but only their number is important, we have

$$
\begin{equation*}
P_{\mathrm{n}}^{(\mathrm{A})}(t)=\binom{N}{n} p_{\mathrm{i}}^{\mathrm{n}}(t)\left[1-p_{\mathrm{i}}(t)\right]^{N-n} . \tag{2}
\end{equation*}
$$

These probabilities correspond to the binomial distribution and fulfil the relation

$$
\begin{equation*}
\sum_{n=0}^{N} P_{n}^{\left(A_{1}\right)}(t)=1 . \tag{2a}
\end{equation*}
$$

Assuming that the particle A_{i} will be changed to A_{j+1} in a very short time interval Δt with the probability $k_{\mathrm{i}} \Delta t$, we can derive $p_{\mathrm{i}}(t)$ in the integral form. For $i=1$:

$$
\begin{equation*}
p_{1}(t)=\lim _{\Delta t \rightarrow 0}\left(1-k_{1} \Delta t\right)^{t / \Delta t}=\exp \left(-k_{1} t\right), \tag{3}
\end{equation*}
$$

which means the probability that the particle A_{1} did not react in the interval $(0, t)$. For $i=2, \ldots j$:

$$
\begin{gather*}
p_{\mathrm{i}}(t)=k_{1} \ldots k_{\mathrm{i}-1} \int_{\tau_{\mathrm{i}-1}=0}^{t} \int_{\tau_{i}-2=0}^{\tau_{\mathrm{i}-1}} \ldots \int_{\tau_{1}=0}^{\tau_{2}} \exp \left[-k_{1} \tau_{1}-k_{2}\left(\tau_{2}-\tau_{1}\right)-\ldots\right. \\
\left.-k_{\mathrm{i}-1}\left(\tau_{\mathrm{i}-1}-\tau_{\mathrm{i}-2}\right)-k_{\mathrm{i}}\left(t-\tau_{\mathrm{i}-1}\right)\right] \mathrm{d} \tau_{1} \ldots \mathrm{~d} \tau_{\mathrm{i}-1} . \tag{4}
\end{gather*}
$$

Here $\tau_{\mathrm{r}}(r=1, \ldots i-1)$ are auxiliary integration variables denoting time in which the particle A_{r} is changed to $\mathrm{A}_{\mathrm{r}+1}$; for $i=j$ we set $k_{\mathrm{j}}=0$.

The mean number of particles A_{i} at time $t,\left\langle N_{\mathrm{Ai}}(t)\right\rangle$, is for the binomial distribution (2) given by

$$
\begin{equation*}
\left\langle N_{A_{1}}(t)\right\rangle=\sum_{n=0}^{N} n P_{n}^{\left(A_{1}\right)}(t)=N p_{\mathrm{i}}(t) . \tag{5}
\end{equation*}
$$

With the use of Eqs (3) and (4) it can be shown that this mean value fulfils the relation

$$
\begin{align*}
\mathrm{d}\left\langle N_{\mathrm{A}_{\mathrm{i}}}(t)\right\rangle / \mathrm{d} t & =N \mathrm{~d} p_{\mathrm{i}}(t) / \mathrm{d} t=-N k_{\mathrm{i}} p_{\mathrm{i}}(t)+N k_{\mathrm{i}-1} p_{\mathrm{i}-1}(t)= \\
& =-k_{\mathrm{i}}\left\langle N_{\mathrm{A}_{1}}(t)\right\rangle+k_{\mathrm{i}-1}\left\langle N_{\mathrm{A}_{1}-1}(t)\right\rangle, \tag{6}
\end{align*}
$$

which is analogous to the law of mass action in classical chemical kinetics. Eqs (6) for $i=1, \ldots j\left(k_{0}=k_{\mathrm{j}}=0\right)$ form a system of linear differential equations of first order which, together with the initial conditions $N_{\mathrm{A} j}(0)=N \delta_{1 i}$ for $i=1, \ldots j$, is identical with the set of equations describing the reacting system in a deterministic way and has therefore the same solution.

The coefficient of variation (relative fluctuation) of the number of particles for the distribution (2) is given as

$$
\begin{align*}
& C V\left\{N_{\mathrm{A}_{i}}(t)\right\} \equiv\left(\left\langle N_{\mathrm{A}_{i}}^{2}(t)\right\rangle-\left\langle N_{\mathrm{A}_{i}}(t)\right\rangle^{2}\right)^{1 / 2} /\left\langle\left(N_{\mathrm{A}_{i}}(t)\right\rangle=\right. \\
& =\left\{\left[p_{\mathrm{i}}^{-1}(t)-1\right] / N\right\}^{1 / 2}=\left(\left\langle N_{\mathrm{A}_{1}}(t)\right\rangle^{-1}-N^{-1}\right)^{1 / 2} \tag{7}
\end{align*}
$$

The mean time, T_{i}, of the conversion of A_{1} to A_{i} is given as

$$
\begin{equation*}
T_{\mathrm{i}}=\int_{0}^{\infty} k_{\mathrm{i}-1} t p_{\mathrm{i}-1}(t) \mathrm{d} t, \quad i=2, \ldots j \tag{8}
\end{equation*}
$$

From the Eqs (6) and (8) we obtain the recurrent formula

$$
\begin{equation*}
T_{\mathrm{i}}=T_{\mathrm{i}-1}+\int_{0}^{\infty} p_{\mathrm{i}-1}(t) \mathrm{d} t \tag{9}
\end{equation*}
$$

The latter integral can be determined in the following way. From Eq. (6) it follows

$$
\begin{equation*}
k_{\mathrm{i}} \int_{0}^{\infty} p_{\mathrm{i}}(t) \mathrm{d} t=k_{\mathrm{i}-1} \int_{0}^{\infty} p_{\mathrm{i}-1}(t) \mathrm{d} t-\left[p_{\mathrm{i}}(t)\right]_{0}^{\infty} . \tag{10}
\end{equation*}
$$

Here the last term is equal to zero for $1<i<j$. Since $\int_{0}^{\infty} p_{1}(t) \mathrm{d} t=1 / k_{1}$, it follows from this equation that $\int_{0}^{\infty} p_{\mathrm{i}}(t) \mathrm{d} t=1 / k_{\mathrm{i}}$. The mean time of conversion of A_{1} to A_{2} is $T_{2}=\int_{0}^{\infty} \exp \left(-k_{1} t\right) k_{1} t \mathrm{~d} t=1 / k_{1}$. Therefore, from Eq. (9) we obtain

$$
\begin{equation*}
T_{\mathrm{i}}=\sum_{\mathrm{r}=1}^{\mathrm{i}=1} 1 / k_{\mathrm{r}} \tag{11}
\end{equation*}
$$

If one of the values of $k_{\mathrm{r}}(r=1 \ldots j-1)$ is much smaller than the others, e.g. k_{s}, then $T_{j} \approx 1 / k_{\mathrm{s}}$. The conversion of A_{s} to $\mathrm{A}_{\mathrm{s}+1}$ is then the rate-determining step in reaction (1).

Reversible First-Order Reaction

We shall consider a reversible reaction of the type

$$
\begin{equation*}
A \neq B \tag{12}
\end{equation*}
$$

Let the number of particles A and B at time $t=0$ be N and zero, respectively. Further, let the probability that the particle A will react in a very short time interval Δt to form B be $k_{1} \Delta t$ and the probability that the particle B will be converted to A during this time interval be $k_{2} \Delta t$. Both conversions proper, $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{A}$, are considered as instantaneous events.
The probability $p_{\mathrm{A}}(t)$ that a selected particle A will not be changed to B at time t (regardless to whether it remains in the interval $(0, t)$ in the form A or not) is

$$
\begin{gather*}
p_{\mathrm{A}}(t)=\exp \left(-k_{1} t\right)\left\{1+\sum_{\mathrm{m}=1}^{\infty}\left(k_{1} k_{2}\right)^{\mathrm{m}} .\right. \\
\left.\cdot \int_{\tau_{2} \mathrm{~m}=0}^{t} \int_{\tau_{2 \mathrm{~m}-\mathrm{t}}=0}^{\tau_{2 \mathrm{~m}}} \ldots \int_{\tau_{1}=0}^{\tau_{2}} \exp \left[\sum_{\mathrm{i}=1}^{2 \mathrm{~m}}(-1)^{\mathrm{i}}\left(k_{1}-k_{2}\right) \tau_{\mathrm{i}}\right] \mathrm{d} \tau_{1} \ldots \mathrm{~d} \tau_{2 \mathrm{~m}}\right\} . \tag{13}
\end{gather*}
$$

The probability $p_{\mathrm{B}}(t)$ that an arbitrarily selected particle A will be converted to B at time t is

$$
\begin{gather*}
p_{\mathrm{B}}(t)=k_{1} \exp \left(-k_{2} t\right) \sum_{\mathrm{m}=0}^{\infty}\left(k_{1} k_{2}\right)^{\mathrm{m}} . \\
\cdot \int_{\tau_{2 \mathrm{~m}+1}=0}^{t} \int_{\tau_{2 \mathrm{~m}}=0}^{\tau_{2 \mathrm{~m}+1}} \cdots \int_{\tau_{1}=0}^{\mathrm{r}_{2}} \exp \left[\sum_{\mathrm{i}=1}^{2 \mathrm{~m}+1}(-1)^{\mathrm{i}}\left(k_{1}-k_{2}\right) \tau_{\mathrm{i}}\right] \mathrm{d} \tau_{1} \ldots \mathrm{~d} \tau_{2 \mathrm{~m}+1} . \tag{14}
\end{gather*}
$$

The auxiliary variables τ_{i} in Eqs (13) and (14) denote time in which A was changed to B (i is odd) or B to A (i is even). From Eqs (13) and (14) we obtain a differential equation for $p_{\mathrm{B}}(t)$:

$$
\begin{equation*}
\mathrm{d} p_{\mathrm{B}}(t) / \mathrm{d} t=-k_{2} p_{\mathrm{B}}(t)+k_{1}\left[1-p_{\mathrm{B}}(t)\right] . \tag{15}
\end{equation*}
$$

Its initial condition is $p_{\mathrm{B}}(0)=0$; its solution is

$$
\begin{equation*}
p_{\mathrm{B}}(t)=k_{1}\left\{1-\exp \left[-\left(k_{1}+k_{2}\right) t\right]\right\} /\left(k_{1}+k_{2}\right) . \tag{16}
\end{equation*}
$$

Since $p_{\mathrm{A}}(t)+p_{\mathrm{B}}(t)=1$,

$$
\begin{equation*}
p_{\mathrm{A}}(t)=\left\{k_{2}+k_{1} \exp \left[-\left(k_{1}+k_{2}\right) t\right]\right\} /\left(k_{1}+k_{2}\right) . \tag{17}
\end{equation*}
$$

The probability that the system contains n particles X at time $t, P_{\mathrm{n}}^{(\mathrm{X})}(t)$, is equal to the product of both probabilities that n particles A are in the state X at time t and that $N-n$ particles A are not in the state X at time t, multiplied by the number of possible arrangements of N numbered particles into two groups containing n and $N-n$ particles:

$$
\begin{equation*}
P_{\mathrm{n}}^{(\mathrm{X})}(t)=\binom{N}{n} p_{\mathrm{X}}^{n}(t)\left[1-p_{\mathrm{X}}(t)\right]^{N-n} ; \quad \mathrm{X}=\mathrm{A} \text { or } \mathrm{B}, \quad n=0,1 \ldots N . \tag{18}
\end{equation*}
$$

This equation corresponds again to a binomial distribution. The mean number of particles X in the system, $\left\langle N_{\mathrm{X}}(t)\right\rangle$, is

$$
\begin{equation*}
\left\langle N_{\mathrm{x}}(t)\right\rangle=N p_{\mathrm{x}}(t) ; \quad \mathrm{X}=\mathrm{A} \text { or } \mathrm{B} . \tag{19}
\end{equation*}
$$

Eqs (16), (17) and (19) are in accord with the deterministic solution. The coefficient of variation of the number of particles in the system is

$$
\begin{equation*}
C V\left\{N_{\mathrm{x}}(t)\right\}=\left\{\left[p_{\mathrm{X}}^{-1}(t)-1\right] / N\right\}^{1 / 2} ; \quad \mathrm{X}=\mathrm{A} \text { or } \mathrm{B} \tag{20}
\end{equation*}
$$

For $t \rightarrow \infty$ (thermodynamic equilibrium) we have

$$
\begin{align*}
& \lim _{t \rightarrow \infty} P_{n}^{(\mathrm{A})}(t)=\binom{N}{n} k_{1}^{N-n} k_{2}^{n} /\left(k_{1}+k_{2}\right)^{N}=\binom{N}{n} K^{N-n} /(1+K)^{N}, \tag{21a}\\
& \lim _{t \rightarrow \infty} P_{n}^{(\mathrm{B})}(t)=\binom{N}{n} k_{1}^{n} k_{2}^{N-n} /\left(k_{1}+k_{2}\right)^{N}=\binom{N}{n} K^{n} /(1+K)^{N}, \tag{21b}
\end{align*}
$$

where $K=k_{1} / k_{2}$ is the equilibrium constant of the reaction. Further,

$$
\begin{gather*}
\lim _{t \rightarrow \infty}\left\langle N_{\mathrm{A}}(t)\right\rangle=N k_{2} /\left(k_{1}+k_{2}\right)=N /(1+K), \tag{22a}\\
\lim _{t \rightarrow \infty}\left\langle N_{\mathrm{B}}(t)\right\rangle=N k_{1} /\left(k_{1}+k_{2}\right)=N K /(1+K) . \tag{22b}
\end{gather*}
$$

The coefficient of variation is:

$$
\begin{align*}
& \lim _{t \rightarrow \infty} C V\left\{N_{\mathrm{A}}(t)\right\}=(K / N)^{1 / 2}, \tag{23a}\\
& \lim _{t \rightarrow \infty} C V\left\{\mathrm{~N}_{\mathrm{B}}(t)\right\}=(1 / K N)^{1 / 2} . \tag{23b}
\end{align*}
$$

These limiting relations correspond to equations derived for mean values and fluctuations of the number of particles in statistical thermodynamics ${ }^{7}$.

Irreversible Parallel Reactions

We shall consider j parallel irreversible reactions of first order:

$$
\begin{equation*}
\mathrm{A}_{0} \rightarrow \mathrm{~A}_{\mathrm{i}} ; \quad i=1, \ldots j \tag{24}
\end{equation*}
$$

and assume that the number of particles A_{0} at time $t=0$ is $N_{\mathrm{A}_{0}}(0)=N$ and the number of particles A_{i} at time $t=0$ is $N_{\mathrm{A}_{i}}(0)=0$ for $i=1, \ldots j$. Let the probability that the particle A_{0} will react in a very short time interval $\Delta t \rightarrow 0$ to form A_{i} be $k_{\mathrm{i}} \Delta t$. Then the probability $p_{0}(t)$ that a selected particle A_{0} will not react during the time interval $(0, t)$ is

$$
\begin{equation*}
p_{0}(t)=\lim _{\Delta t \rightarrow 0}\left(1-\sum_{\mathrm{i}=1}^{\mathrm{j}} k_{\mathrm{i}} \Delta t\right)^{t / \Delta t}=\exp \left(-\sum_{\mathrm{i}=1}^{\mathrm{j}} k_{\mathrm{i}} t\right), \tag{25}
\end{equation*}
$$

and the probability $p_{i}(t)$ that a selected molecule A_{0} will react during the interval $(0, t)$ to form A_{i} is

$$
\begin{equation*}
p_{i}(t)=\int_{0}^{t} \exp \left(-\sum_{i=1}^{j} k_{i} \tau\right) k_{\mathrm{i}} \mathrm{~d} \tau=\left(k_{\mathrm{i}} / \sum_{\mathrm{i}=1}^{\mathrm{j}} k_{\mathrm{i}}\right) \cdot\left[1-\exp \left(-\sum_{\mathrm{i}=1}^{\mathrm{j}} k_{\mathrm{i}} t\right)\right] ; \quad i=1, \ldots j . \tag{26}
\end{equation*}
$$

The sum of all probabilities $p_{\mathrm{i}}(i=0,1, \ldots j)$ is equal to 1 . The probability $P_{\mathrm{n}}^{\left(\mathrm{A}_{\mathrm{A}}\right)}(t)$ that the system contains n particles A_{i} at time $t(i=0,1, \ldots j)$ is again given by the binomial distribution

$$
\begin{equation*}
P_{\mathrm{r}}^{\left(\mathrm{A}_{\mathrm{A}}\right)(t)}=\binom{N}{n} p_{\mathrm{i}}^{\mathrm{n}}(t)\left[1-p_{\mathrm{i}}(t)\right]^{N-n} ; \quad i=0,1, \ldots j . \tag{27}
\end{equation*}
$$

The mean number of particles A_{i} and coefficient of variation of the number of particles are given by analogous expressions as in the preceding cases:

$$
\begin{gather*}
\left\langle N_{\mathrm{A}_{1}}(t)\right\rangle=N p_{\mathrm{i}}(t), \quad i=0,1, \ldots j, \tag{28}\\
C V\left\{N_{\mathrm{A}_{i}}(t)\right\}=\left\{\left[p_{\mathrm{i}}^{-1}(t)-1\right] / N\right\}^{1 / 2} ; \quad i=0,1, \ldots j . \tag{29}
\end{gather*}
$$

REFERENCES

1. McQuarrie D. A.: J. Appl. Prob. 4, 413 (1967).
2. Bartholomay A. F.: Bull. Math. Biophys. 20, 175 (1958).
3. McQuarrie D. A.: J. Chem. Phys. 38, 433 (1963).
4. Darvey I. G., Staff P. J.: J. Chem. Phys. 44, 990 (1966).
5. Fredrickson A. G.: Chem. Eng. Sci. 21, 687 (1966).
6. Solc M.: Z. Physik. Chem. (Frankfurt) 75, 223 (1971).
7. Hill T. L.: An Introduction to Statistical Thermodynamics, p. 181. Addison-Wesley, Reading 1962.
[^0]
[^0]: Translated by K. Micka.

