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A stochastic description of the kinetics of some reactions of first order (consecutive irreversible, 
reversible, and parallel irreversible reaction s) is derived. The method eliminates the necessity 
of s~lving differential-difference equations and is based on determining the probability 'of trans­
formation of one particle in a finite time interval. 

The stochastic concept has been applied in the description of a number of mono- and bimolecular 
reactions I. For the studied types of first-order reactions (isolated2 ,3, reversible3 and two parallel 
reactions3 , multicomponent system of first-order reactions4 , triangular reactions), it was shown 
that an exact solution can be found for the mean number of particles of a given type at time t 

and for fluctuation of the number of particles; the stochastic mean number of particles agrees 
with classical (deterministic) value. In most cases 1 , 3 ,4, the system was described by a system 
of differential-difference equa tions which were solved with the aid of a generating function. 

In the present paper the stochastic concept is applied to the kinetics of conse­
cutive irreversible reactions, a reversible and a parallel irreversible one, all of first 
order, hence cases solved already earlier l ,3.4. However, the method of solution is 
different in that it is simpler and avoids the solution of differential-difference equa­
tions. 

Consecutive Irreversible First-Order Reactions 

We shall consider j-l consecutive irreversible reactions of first order: 

Ai -> Ai + I' i = 1 , ... j-l , (1) 

Let the number of particles Ai at time t be N A,(t); we. assume that N A/O) = Nand 
N A,(O) = 0 for i > 1. Further, the probability that the particle Ai will be transformed 
to Ai + 1 during a very short time interval L\t(M -> 0) is k i L\t. The conversion of Ai 
to Ai + I is considered as an instantaneous event (this assumption is discussed else­
where6 ) . The system (1.) will be described stochastically if the probability p~A')(t) 
that the number of particles Ai at time t is n (i = 1, ... j, n = 0,1 ... N) is known 
at any time t > O. Let p/t) be the probability that an arbitrarily selected particle Al 
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will be converted to Ai durjng the time interval (0, t), then p~Ai)(t) can be derived 
as follows: The system.will contain just n particles Ai at time t if n particles A I were 
converted to Ai in the interval (0, t) and N-n particles Al were converted to Ar 
(r '* i) or did not react at all. The probability that n selected particles Al were con­
verted to Ai is p~(t) and the probability that the remaining N -n particles At did 
not react, or were converted to Ar (r '* i) is [1 - p;(t)r- II

• There are (~) possibili­
ties how to divide N numbered particles into two groups containing nand N - n 
particles. Since it plays no role what particles Al were converted to Ai but only their 
number is important, we have 

(2) 

These probabilities correspond to the binomial distribution and fulfil the relation 

N 

I p~AI)(t) = 1 . (2a) 
11 = 0 

Assuming that the particle Ai will be changed to Ai + I in a very short time interval 
Ilt with the probability ki Ilt, we can derive Pi(t) in the integral form. For i = 1: 

PI(t) = lim (1 - kl Ilty /At = exp (- kit) , (3) 
61 -+ 0 

which means the probability that the particle Al did not react in the interval (0, t) . 
For i = 2, ... j: 

(4) 

Here 't"r (r = 1, . .. i - 1) are auxiliary integration variables denoting time in which 
the particle Ar is changed to Ar+ I; for i = j we set k j = 0. 

The mean number of particles Ai at time t, (N Ai(t), is for the binomial distribu­
tion (2) given by 

N 

(NAlt) = I np~AI)(t) = Npi(t). (5) 
n=O 

With the use of Eqs (3) and (4) it can be shown that this mean value fulfils the relation 

d( NA/t)/dt = N dpi(t)/dt = - NkiPi(t) + Nki-1Pi-l(t) = 

- ki(NAlt) + ki-I(NAn(t) , (6) 
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which is analogous to the law of mass action in classical chemical kinetics. Eqs (6) 
for i = 1, ... j (ko = k j = 0) form a system of linear differential equations of first 
order which, together with the initial conditions N Ai(O) = Nb li for i = 1, ... j, is 
identical with the set of equations describing the reacting system in a deterministic 
way and has therefore the same solution. 

The coefficient of variation (relative fluctuation) of the number of particles for the 
distribution (2) is given as 

CV{NA/t)} = «N~i(t» - <NAj(t)/)1/2/«NAj(t) = 

= {[Pi-I(t) - 1J/NP/2 = «NA,(t»-1 - N- I )1 /2. 

The mean time, Ti , of the conversion of Al to Ai is given as 

From the Eqs (6) and (8) we obtain the recurrent formula 

(7) 

(8) 

(9) 

The latter integral can be determined in the following way . From Eq. (6) it follows 

(10) 

Here the last term is equal to zero for 1 < i < j. Since J;' PI(t) dt = 11kl' it follows 
from this equation that S;' Pi(t) dt = 1lki' The mean time of conversion of At to A2 
is T2 = J;' exp (- kit) kit dt = 11kl. Therefore, from Eq. (9) we obtain 

i=1 

~ = I like. (11) 
e=1 

If one of the values of ke (r = 1 . . . j - 1) is much smaller than the others, e.g. ks' 
then 1j ~ Ilks. The conversion of As to As+ I is then the rate-determining step 
in reaction (1). 

Reversible First-Order Reaction · 

We shall consider a reversible reaction of the type 

A +± B. 
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Let the number of particles A and B at time t = 0 be N and zero, respectively. 
Further, let the probability that the particle A will react in a very short time interval 
f...t to form B be k1 f...t and the probability that the particle B will be converted to A 
during this time interval be k2 f...t. Both conversions proper, A -+ Band B -+ A, are 
considered as instantaneous events. 

The probability PACt) that a selected particle A will not be changed to B at time t 

(regardless to whether it remains in the interval (0 , t) in the form A or not) is 

00 

PACt) = exp (- k1t) {l + I (k1k2)rn . 
rn;1 

(13) 

The probability PaCt) that an arbitrarily selected particle A wiII be converted to B 
at time tis 

00 

pit) = k1 exp (- k2t) I (klk2)rn . 
rn;O 

(14) 

The auxiliary variables 1: j in Eqs (13) and (I4) denote time in which A was changed 
to B (i is odd) or B to A (i is even). From Eqs (13) and (14) we obtain a differential 

equation for PaCt): 

(15) 

Its initial condition is Pa(O) = 0; its solution is 

(16) 

Since PACt) + PaCt) = 1 , 

(17) 

The probability that the system contains n particles X at time t, p~X)(t) , is equal to 
the product of both probabilities that n particles A. are in the state X at time t and 
that N - n particles A are not in the state X at time t, multiplied by the number 
of possible arrangements of N numbered particles into two groups containing nand 
N - n particles: 
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p~X)(t) = (~) p~(t) [1 - PX(t)Y-II; X = A or B, n = 0,1 ... N . (1S) 

This equation corresponds again to a binomial distribution. The mean number 
of particles X in the system, <Nx(t) , is 

<Nx(t) = Npx(t) ; X = A or B . (19) 

Eqs (16), (17) and (19) are in accord with the deterministic solution. The coefficient 
of variation of the number of particles in the system is 

CV{Nx(t)} = {[p~l(t) - 1J/N}1/2; X = A or B. (20) 

For t --+ OC! (thermodynamic equilibrium) we have 

lim p~A)(t) = (~) k~-lIk~/(kl + k2t = G) KN
-

II /U + Kt, (2la) 
1-00 

where K = kd k2 is the equilibrium constant of the reaction. Further, 

lim <NA(t) = Nk2/(kl + k2) = N/(1 + K), (22 a) 
1-00 

lim <NB(t) = Nkl/(kl + k2) = NK/(1 + K) . (22b) 
1-00 

The coefficient of variation is: 

lim CV{NA(t)} = (K/N)1 /2, (23a) 

lim CV{NB(t)} = (1/KN)1/2 . (23 b) 

These limiting relations correspond to equations derived for mean values and fluc­
tuations of the number of particles in statistical thermodynamics7

. 

Irreversible Parallel Reactions 

We shall consider j parallel irreversible reactions of first order: 

Ao --+ Ai; i = 1, .,. j , (24) 
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and assume that the number of particles Ao at time t = 0 is N Ao(O) = N and the 
number of particlesA j at time t = 0 is N A.(O) = 0 for i = 1, .. , j. Let the probability 
that the particle Ao will react in a very short time interval Ilt - 0 to form Ai be k; M. 
Then the probability poet) that a selected particle Ao will not react during the time 
interval (0, t) is 

poet) = lim (1 - ± ki Ilt)'/LI.t = exp ( - ± kit) , (25) 
LI.t--+O ;=1 ;=1 

and the probability p;(t) that a selected molecule Ao will react during the interval 
(0 , t) to form A; is 

The sum of all probabilities Pi (i = 0, 1, ... j) is equal to 1. The probability p~AI)(t) 
that the system contains n particles Ai at time t (i = 0, 1, ... j) is again given by the 
binomial distribution 

p~Al\t) = (~) p?(t) [1 - p;(t)y-n; i = 0, 1, ... j . (27) 

The mean number of particles Ai and coefficient of variation of the number of par­
ticles are given by analogous expressions as in the preceding cases: 

(28) 

(29) 
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